AP[®] CALCULUS AB 2005 SCORING GUIDELINES

Question 2

The tide removes sand from Sandy Point Beach at a rate modeled by the function R, given by

$$R(t) = 2 + 5\sin\left(\frac{4\pi t}{25}\right).$$

A pumping station adds sand to the beach at a rate modeled by the function S, given by

$$S(t) = \frac{15t}{1+3t}.$$

Both R(t) and S(t) have units of cubic yards per hour and t is measured in hours for $0 \le t \le 6$. At time t = 0, the beach contains 2500 cubic yards of sand.

- (a) How much sand will the tide remove from the beach during this 6-hour period? Indicate units of measure.
- (b) Write an expression for Y(t), the total number of cubic yards of sand on the beach at time t.
- (c) Find the rate at which the total amount of sand on the beach is changing at time t = 4.
- (d) For $0 \le t \le 6$, at what time t is the amount of sand on the beach a minimum? What is the minimum value? Justify your answers.

(a)	$\int_0^6 R(t) dt = 31.815 \text{ or } 31.816 \text{ yd}^3$			2 : $\begin{cases} 1 : integral \\ 1 : answer with units \end{cases}$
(b)	$Y(t) = 2500 + \int_0^t (S(x) - R(x)) dx$			$3: \begin{cases} 1: integrand \\ 1: limits \\ 1: answer \end{cases}$
(c)	Y'(t) = S(t) - R(t) $Y'(4) = S(4) - R(4) = -1.908 \text{ or } -1.909 \text{ yd}^3/\text{hr}$			1 : answer
(d)	Y'(t) = 0 when $S(t) - R(t) = 0$. The only value in [0, 6] to satisfy $S(t) = R(t)$ is $a = 5.117865$.			3: $\begin{cases} 1 : \text{sets } Y'(t) = 0\\ 1 : \text{critical } t\text{-value}\\ 1 : \text{answer with justification} \end{cases}$
	t	Y(t)		
	0	2500		
	a	2492.3694		
	6	2493.2766		
	The an	nount of sand	is a minimum when $t = 5.117$ or	

5.118 hours. The minimum value is 2492.369 cubic yards.

Copyright © 2005 by College Board. All rights reserved.

Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).