
Using Loops in Visual Basic

Basic Loop Concepts:

Loops are programming structures that repeat the same commands over and over until
told to stop. There are 3 basic types of loops used in programming VB.

I. For-Next
II. While-Wend
III. Do-Loop Until

Let’s examine them one at a time:

For-Next loop
These loops are designed for COUNTING. If you need the same thing done a known
amount of times, like 1 to 10, -5 to 5, or 0 to 1000, then For-Next loops should be used.
Now, examine an easy example of a For-Next loop.

The above code simply writes hello world to the form 10 times.

For i = 1 to 10
 Form1.print “hello world”
Next i

Counter Variable Starting Value

Stopping Value

Increase i to the next number

Command Statements

Private Sub Comm
For i = 1 To 10

and1_Click()

 Form1.Print "hello world"
Next i
End Sub

Now, that you are excited, let’s examine the loop structure by looking at the diagram
above.

1. The Counter Variable: this variable is usually an integer or long type, whose
only purpose is count from a starting value to a stopping value.

2. The Starting Value: the value to begin counting from.
3. The Stopping Value: the value to end the looping process.
4. The Command Statements: the stuff you need to have repeated by the loop.
5. The Next: instructs VB to change the counter variable to the next number.

In the above example the loop variable, i, is assigned the value 1 (the first number) and
then VB runs the command to print hello world to the form. After printing to the form the
i is increased by 1 to 2 with next i statement. This process of printing to the form and
increasing i’s value continues until i reaches 10. Remember, i is a variable and variables
are good for one thing, storing information! So, VB is increasing the value of i by 1 and
storing it back into I every time the loop completes a cycle. Look the code below. What
do you think it does?

 For I = 1 to 10

 Form1.print I
Next i

Prints the numbers 1 thru 10 on the form. That’s because VB is re-assigning i the next
value in the count.

MORE INFO:

Can VB only count by 1’s? NO, VB can count by 2’s, 3’s or what ever you want, just as
long as your counting by integer numbers (NO COUNTING BY DECIMALS). VB can
even count backwards (10,9,8,7,…) So, how is it done? Just add the Step command in
and tell it how you want it to count. Look at the examples:

For –Next loops are made for counting.
They are really useful while working with arrays!?!

General Format for a FOR-NEXT Loops

Count by 2’s

For I = 1 to 10 Step 2
 Form1.print I
Next i

Count backwards by 1

For I = 1 to 10 Step -1
 Form1.print I
Next i

W

W
a
F

For <countvariable> = <startvariable> To <stopvariable>
 <command statements>

Next <countvariable>
hile-Wend Loops
hile-Wend Loops are CONDITIONAL loops. They repeat the same commands over

nd over while a condition is true and stop repeating when a condition is false. Unlike,
or-Next loops that stop at a number, While-Wend loops wait for a condition (Boolean

expression) to become false to stop repeating. An example of a conditional loop is a
simple video game. The player is allowed to play the game while he still has lives. When
the player looses all of his lives the game is over. While you still have lives – keep
playing. Let’s look at an example:

While-Wend Loop

Private Sub Form_Load()
Dim num As Integer
Dim score As Integer
Dim lives As Integer
Randomize

lives = 3
While lives > 0
 answer = InputBox("Type H for heads or T for tails (Score= " & score & ")(Lives=" & lives & ")", "Guess")
 n
 If (num = 1 And answer = "H") Or (num = 2 And answer = "T") Then

um = Int(Rnd * 2) + 1

 score = score + 1
 Else
 lives = lives - 1
 End If
 lblScore.Caption = score
Wend
End Sub

Loop Condition

Initialize Lives to 3

In the above example, the program starts and the user e
wrong then one life is taken. If he is correct then one i
stops when the While-Wend loop’s condition of lives>
playing while you still have lives.

MORE INFO:

While – Wend loops test their conditions at the TOP. I
then you don’t get into the loop.

General format for a WHILE-WEND loop

While <condition>
 <command statements>

Wend

nters H or T. If the player guesses
s added to his score. The game
0 is not met. In other words, keep

f you don’t pass the condition,

Do-Loop Until

Like the While-Wend loop, the Do-Loop Until is also a conditional loop. The difference
between the two is the Do-Loop Until has its condition at the end of the loop, not at the
beginning like the While-Wend. Having the condition at the BOTTOM of the loop means
you are guaranteed to go thru the loop ONCE. Whereas the While – Wend you are NOT
guaranteed to go thru the loop, because the condition is at the TOP of the loop. A classic
example of this is rocket example. A rocket starts from the bottom of the form. The
rocket moves upward until it reaches the top of the form. I know when I hit the GO
button to make the rocket move. So, there is no reason to test before the rocket moves.
Let the rocket move and test it’s position at the bottom.

Take a look at the program:

Private Sub cmdGo2_Click()
Dim i As Long

Do
 pctRocket.Move pctRocket.Left, pctRocket.Top - 10
Loop Until pctRocket.Top <= 0
End Sub

Condition

You stay in this loop
until your condition
turns true, then you
drop out of the loop

Do- Loop Until

No testing at the top, you can
only test at the bottom. You
go thru this loop at least once.

MORE INFO:

Do-Loop Until loops test at the bottom and drop out of the loop when the condition is
true. Whereas a While-Wend loop tests it’s condition at the top of the loop and drops out
of the loop when the condition turns false. Use the Do-Loop Until loop if you know the
loop needs to be ran at least once.
General format for a Do-Loop Until

Do
 <command statements>
Loop Until <condition>

	Using Loops in Visual Basic
	For-Next loop
	While-Wend Loops
	Do-Loop Until

